Прогнозируем будущий спрос на товары и услуги

Прогнозирование спроса на новые продукты и услуги

В логистике часто приходится решать проблему прогнозирования спроса на продукцию, по которой пока еще нет достаточно большой статистики продаж. Для решения этой проблемы используются несколько различных подходов, которые помогут преодолеть этот ранний период в продвижении продукта на рынке.

Во-первых, начальный прогноз можно получить из отдела маркетинга, пока не будет накоплена достаточная статистика продаж.

Обычно маркетологи лучше знают, сколько средств требуется на продвижение товара, какой будет потребительская реакция на товар и какие будут ожидаемые продажи.

Обратите внимание

Этот прогноз должен охватывать период не менее шести месяцев, чтобы можно получить достаточно представительную статистику для последующего прогнозирования.

Во-вторых, прогноз продаж можно построить на основании статистики о продажах схожих продуктов. Известно, что многие компании полностью обновляют свою продуктовую номенклатуру в среднем каждые пять лет.

Однако некоторые товары оказываются принципиально новыми. Их появление связано с изменениями в размерах, стиле продукции или просто с радикальным пересмотром номенклатуры как элемента маркетинговой политики фирмы.

Такие товары прогнозируются только на основании оценочных данных, получаемых из отдела маркетинга.

В-третьих, для прогнозирования можно использовать модель экспоненциального сглаживания, установив коэффициент a на уровне 0,5 и выше. По мере того, как будет накапливаться все больше и больше статистики, этот показатель можно снизить до нормального уровня.

Нерегулярный спрос

О проблеме нерегулярного спроса уже шла речь в начале этого раздела. При нерегулярном спросе случайные колебания столь велики, что не позволяют выявить тренд или сезонную составляющую спроса. У такого спроса может быть несколько причин:

§ продажи осуществляются редко, но очень крупными партиями;

§ продажа товара зависит от продаж других продуктов и услуг;

§ слишком велики сезонные и иные перепады в продажах в течение одного года, что не позволяет выявить тренд;

§ продажи обусловлены случайными факторами, такие как спекуляция, слухи, кратковременная мода и пр.

Нерегулярный спрос трудно прогнозировать с помощью математических методов вследствие большого разброса временного ряда. Однако все же можно дать несколько советов, что лучше делать при нерегулярном спросе.

Во-первых, следует выявить причины нерегулярности спроса и с учетом этого фактора построить прогноз продаж. Также следует отделить продукты с нерегулярным спросом от тех, который показывают устойчивый тренд, и использовать для каждой категории разные, наиболее подходящие методы прогнозирования.

Пример. Производитель химической продукции выпускает средство для очистки яблок во время сбора урожая. В зависимости от урожая яблок, продажи этого средства значительно колеблются из года в год. Для прогнозирования продаж этого средства использовалась модель экспоненциального сглаживания, как и для всех прочих продуктов.

Важно

Вследствие этого запасы продукции данного средства на складах оказывались существенно больше, либо существенно меньше спроса, который предъявлялся на рынке. Причиной этого было то, что компания при прогнозировании не разделяла продукцию с регулярным и нерегулярным спросом. Ситуация можно исправить, если прогноз строить с учетом того главного фактора, который определяет спрос на товар, т.е.

исходя из того, какой урожай яблок ожидается в этом году.

Во-вторых, не следует слишком быстро реагировать на изменения в продажах такого рода продуктов или услуг, если, конечно, нет серьезных причин полагать, что спрос действительно изменился.

Лучше всего использовать простую модель прогнозирования, которая не слишком быстро реагирует на изменения.

Например, это может быть экспоненциальное сглаживание с низким уровнем коэффициента a или регрессионная модель с шагом прогнозирования 1 год.

В-третьих, поскольку нерегулярный спрос часто наблюдается у товаров с небольшим объемом продаж, можно не уделять слишком много внимания точности прогноза. Например, если прогноз используется для определения уровня запасов, то более экономично будет создать небольшой дополнительный запас, чем использовать более сложные и точные методики прогнозирования.

Прогнозирование по регионам

Хотя до сих пор обсуждение касалось только вопросов прогнозирования продаж во времени, однако прогнозирование продаж в разрезе по регионам также заслуживает внимания.

Необходимо решить, как будут прогнозироваться продажи: в целом по всему рынку, по отдельным районам и регионам или же по территориям, которые примыкают к конкретным заводам или складским комплексам. Очень важно обеспечить высокую точность прогнозирования, если оно ведется отдельно по каждому региону.

Обобщающий прогноз по всему рынку оказывается, как правило, более точным, чем сумма отдельных прогнозов по регионам. Поскольку это так, то, возможно, лучше будет построить общий прогноз по рынку, чтобы затем его пропорционально разбить по регионам, чем вести раздельное прогнозирование по каждому региону.

Совет

Впрочем, как показывает практика, однозначного ответа на вопрос, какой подход лучше, не существует. Следовательно, нужно иметь в виду оба варианта и использовать их в зависимости от конкретной ситуации.

Ошибка прогнозирования

В конце главы поговорим об одном очень важном инструменте прогнозирования. Было рассмотрено уже много моделей и методик прогнозирования. У каждой есть свои плюсы и минусы, поэтому лучше всего использовать при прогнозировании сразу несколько моделей, что позволит получить более точный и стабильный прогноз на будущее.

Пример. Вернемся к проблеме прогнозирования продаж женской одежды, которая обсуждалась выше. Производитель выделил в году пять сезонов продаж. Нет никакой гарантии, что для каждого сезона наилучшей будет одна и та же методика прогнозирования. Фактически, для прогнозирования использовалось четыре разных модели.

Во-первых, использовалась модель множественной регрессии (R), которая учитывала факторы: 1) количество потребительских заявок; 2) изменения задолженности покупателей. Во-вторых, два варианта модели экспоненциального сглаживания (ES1, ES2). И в-третьих, собственный прогноз компании, который основывается на мнениях и оценках персонала (MJ).

Средняя ошибка прогнозирования, полученная по каждому методу в разрезе по сезонам, показана на следующем рисунке:

/* в среднем за три сезона; /** в среднем за два сезона.

Объединить полученные прогнозы в один можно методом взвешенных коэффициентов, которые зависят от средней ошибки прогнозирования каждого метода. В этом случае не придется отказываться ни от одного из методов и впадать в зависимость от какой-то одной методики, которая кажется наиболее достоверной.

Для иллюстрации метода взвешенных коэффициентов, рассмотрим осенний период продаж. Средняя ошибка прогнозирования по методам, а также порядок расчета взвешенных коэффициентов представлены в следующей таблице (см. ниже).

Наконец, получив весовые коэффициенты, с их помощью можно рассчитать итоговый прогноз продаж, который составляет $20 210 тыс. Расчет показан во второй таблице (см. ниже).

Таблица 1

Ошибка прогнозирования Доля ошибки прогнозирования Инверсия Весовые коэффициенты
(1) (2) (3)=1/(2) (4)
MJ 9,0 0,466 2,14 0,045
R 0,7 0,036 27,57 0,573
ES1 1,2 0,062 16,08 0,334
ES2 8,4 0,435 2,30 0,048
S 19,3 1,000 48,10 1,000

Таблица 2

Модель прогнозирования Прогноз продаж Весовые коэффициенты Взвешенная пропорция
Мнения персонала фирмы (MJ) $19 500 000 0,045 $869 427
Регрессионная модель (R) $20 367 000 0,573 $11 675 350
Экспоненциальное сглаживание (ES1) $20 400 000 0,334 $6 821 656
Экспоненциальное сглаживание (ES2) $17 660 000 0,048 $843 631
Сумма $20 210 064

Прогнозирование спроса – это научно обоснованное предсказание развития рынка во времени на основе изучения причинно-следственных связей, тенденций и закономерностей.

Прогнозирование спроса в торговом предприятии — это прогноз будущих продаж, определение потребности в товарах и необходимых объемов закупок, составление заказов на поставку товаров.

В зависимости от времени различают следующие виды прогнозирования спроса:

§ оперативное — до 1 месяца;

§ конъюнктурное — от 3 до 6 месяцев;

§ краткосрочное — от 1 года до 2 лет;

§ среднесрочное — от 2 до 5 лет;

§ долгосрочное — от 5 до 10 лет;

§ перспективное — свыше 10 лет.

Источник: https://cyberpedia.su/16xa1e.html

Спрос, специфика его формирования и прогнозирования

Сохрани ссылку в одной из сетей:

Еще недавно российские предприятия розничной торговли мало задумывались о важности составления точных прогнозов спроса. Руководством составлялись планы продаж, заключались договоры на поставку соответствующих товаров, а затем склады заваливались продукцией, и мог пройти не один месяц, прежде чем ее раскупали. Теперь все иначе.

Информационное обеспечение анализа спроса – это система сбора и обработки данных, позволяющих изучить состояние исследуемого предмета или объекта, измерить влияние определяющих его факторов и выявить возможности управления им8.

Выборочный метод применяют также при проведении устных и письменных опросов потребителей в розничной торговле для изучения спроса на продукцию, причин его снижения или отсутствия.

Обратите внимание

К анализу спроса должен быть применен системный подход – это предполагает рассмотрение его как составного элемента рынка.

В процессе исследования спроса использование экономико-математических методов начинается на этапе определения необходимой численности выборки для проведения выборочного обследования.

Прогнозирование спроса представляет собой определение возможного будущего спроса на товары и услуги в целях лучшего приспособления субъектов хозяйствования к складывающейся конъюнктуре рынка.

Прогноз спроса – это теоретически обоснованная система показателей о еще неизвестном объеме и структуре спроса. Прогнозирование связывает накопленный в прошлом опыт об объеме и структуре спроса с предсказанием будущего их состояния.

Спрос прогнозируется на отдельный товар или группу товаров.

Такой прогноз дает представление о реальном уровне спроса на товар в будущем на конкретный период. При этом чем короче период, тем точнее прогноз.

Прогноз спроса представляет собой расчет влияния факторов, определяемых как детерминанты спроса.

Читайте также:  Сколько зарабатывают на ufc его владельцы

Однако включение в расчет значительного числа детерминант при построении прогнозной модели считается неоправданным: вместо повышения точности и надежности это приводит к значительному усложнению и без того громоздкой вычислительной работы.

Прежде всего, ужесточается конкуренция розничных сетей, при этом лояльность покупателей к конкретному магазину снизилась. Кроме того, ассортимент супер и гипер маркетов насчитывает десятки тысяч SKU и продолжает расширяться, что очень осложняет процесс прогнозирования и планирования.

Важно

Ошибки же в прогнозах ведут к избыточным запасам, ненужным распродажам или дефициту товаров и, как следствие, упущенной выгоде.

Многие компании это уже понимают, и вопрос для них состоит не в том, нужно или не нужно заниматься прогнозированием спроса, а в том, как правильно организовать этот процесс и получить на выходе точные прогнозы и планы продаж.

С одной стороны, все торговые предприятия сталкиваются с одинаковыми задачами: нужно отследить историю продаж товара, а затем, на ее основе, при помощи методов статистического анализа и экспертных корректировок, построить прогноз продаж.

Однако, если присмотреться, компании различных секторов розничной торговли сталкиваются со своими, достаточно специфическими проблемами. Ведь при прогнозировании спроса учитываются жизненный цикл продукта, тип оборачиваемости товара, история продаж, стратегия дистрибуции, прогноз отдельного товара или товарной группы.

И, соответственно, прогнозирование спроса на различные категории товаров носит достаточно специфичный характер.

В качестве примера возьмем продовольственные сети и магазины, торгующие бытовой техникой и электроникой9.

Продовольственные сети чаще всего опираются на историю продаж и с учетом вероятных изменений рыночных условий, сезонных факторов и т.д. составляют прогнозы.

Для магазинов, торгующих бытовой техникой и электроникой, прогнозирование спроса осложняется из-за постоянного выхода на рынок новых моделей и отсутствием для них истории продаж.

Совет

Для прогнозирования спроса на новинки специалисты используют истории продаж замещающих товаров, и на их основе, с помощью экспертных корректировок, составляют прогноз продаж. Основной сложностью в прогнозировании спроса на новые товары является правильный выбор субститута и, соответственно, правильная оценка экспертами потенциала спроса на него.

Еще одной особенностью является длительный срок выполнения заказа (в среднем до 3 месяцев), соответственно, прогноз необходимо составлять как минимум на 4 месяца.

В целом, неточные прогнозы имеют общие корни. Это неправильный подход к организации прогнозирования спроса, отсутствие информационной прозрачности и несогласованность действий различных отделов.

Многие компании прогнозируют возможность поставки товаров или услуг, а не реальный спрос. В начале прогнозного цикла важно создать прогнозы, которые не ограничены возможностью поставок.

Прогнозирование, базирующееся на истории поставок, ведет к тому, что компании воспроизводят свои ошибки, и не удовлетворяют покупательский спрос.

Прогнозирование реального спроса позволяет найти узкие места и оптимизировать процессы.

Громоздкие неавтоматизированные процессы и таблицы приводят к огромному объему негибких, фрагментарных систем планирования.

Несопоставимые системы с несвязанной информацией, от ориентированных на продажу планов дохода, до прогнозов отделов, ориентированных на процессы, ведут к расхождениям, из-за чего невозможно создание связанных единых планов.

Обратите внимание

Чтобы решить эту проблему, необходимо создать общее информационное пространство предприятия. Однако применить этот подход проще на словах, чем на деле10.

Компании уже давно отслеживают данные о продажах с POS терминалов. Прогнозы же составляются с помощью специализированных моделирующих решений, либо по старинке, в Excel.

До сих пор высока доля экспертной оценки при составлении прогнозов, что не всегда положительно отражается на их точности.

Несколько лет назад в России появились системы прогнозирования класса SCM, которые многие сети на Западе уже давно используют.

Основные функции SCM решения можно вкратце обозначить следующим образом: консолидация и обработка данных, анализ, поддержка процессов и предоставление отчетности.

Прежде всего, системы прогнозирования спроса синтезируют огромные массивы различной информации. Для обработки данных система использует многочисленные статистические инструменты, анализ на основе исключений, а также методы сценарного моделирования.

Система поддерживает многомерный анализ и планирование. Это требуется для того, чтобы при анализе данных учитывать различные критерии, например, информацию о месте покупки, времени покупки, покупателе.

Например, при планировании промо-акций, большое значение может иметь информация о поле, возрасте и других характеристиках покупателя.

Важно

Второй важной функцией, которую выполняют подобные системы, является интеграция отделов финансов, маркетинга, продаж, логистики и создание общего информационного поля между компанией, ее клиентами и контрагентами. Для этого система должна легко интегрироваться с другими информационными приложениями.

Таким образом, решение по прогнозированию спроса охватывает все основные звенья и позволяет формировать согласованные планы. Если речь идет о компании, имеющей региональную сеть продаж, то подобная система позволяет руководству не только отслеживать общие, глобальные тенденции продаж, т.е.

осуществлять планирование сверху вниз, но также иметь возможность отслеживать продажи на местах, и вносить их в общие планы. Таким образом, система поддерживает не только данные, но и процессы и позволяет проактивно управлять спросом.

Это означает, что в систему постоянно поступают данные о продажах, и на их основе автоматически проводится перепланирование, причем, система обладает способностью отслеживать тенденции в продажах и учитывать их в дальнейшем при составлении прогнозов.

Подобные системы поддерживают функцию рассылки уведомлений о проблемных ситуациях и узких местах. Например, коммерческий отдел система предупредит о росте продаж определенного товара и может подсказать о необходимости заключения дополнительного соглашения с поставщиком об увеличении объемов, а отдел планирования о допущенных ошибках при прогнозировании спроса на определенный товар.

Существуют условия, при которых прогнозировать спрос вообще не целесообразно:

когда приемлемое время на ожидание клиентом, пока выполнится его заказ, превышает время на производство и закупку компонентов; другими словами, клиент готов ждать свой заказ столько времени, сколько организации потребуется для выполнения заказа без предварительного планирования;

если мощности и прочие необходимые ресурсы для выполнения заказов клиентов этих организаций могут быть изменены быстро и не требуют существенных затрат;

когда нет необходимости в финансовом планировании.

Во всех остальных случаях без прогнозирования спроса не обойтись. Однако формировать прогнозы спроса нужно ровно настолько, насколько этого требуют конкретные цели. Каждый из перечисленных ниже параметров прогнозов спроса должен быть обоснован целью его использования и определен до начала формирования прогноза.

Совет

Горизонт планирования. На какой период в будущем должен быть составлен прогноз? 10 лет? 12 месяцев? Неделя?

Уровень детализации. Должен ли прогноз спроса отражать конечные продукты по заказчикам? Или достаточно суммарного плана по категориям?

Частота пересмотра. Требуется ли прогноз спроса пересматривать раз в год? Раз в квартал? Раз в месяц? Раз в неделю? Каждый день? Каждый час?

Интервал прогнозирования. Какие временные промежутки должен отражать прогноз спроса? Годы? Месяцы? Недели? Дни?

2.2 Методы прогнозирования

Существует много классификаций методов прогнозирования спроса. Для удобства можно выделить всего две группы: экспертные и статистические.

Первые основаны на экспертных оценках и по своей природе субъективны. Суть их заключается в переведении различных экспертных мнений в формулы, из которых формируется прогноз. К экспертным методам относятся: метод комиссии, «мозговая атака», анкетный опрос, метод Дельфи11.

Статистические методы предполагают применение статистических расчетов для построения будущего на основе прошлого. Типичный пример – методы исчисления средних. Один из них – применение скользящей средней величины.

Предположим, компания захотела использовать скользящую среднюю величину за 12 недель для прогноза спроса какого-либо товара. Для этого суммируют продажи за последние 12 недель, сумму делят на 12, получая таким образом среднюю величину.

Обратите внимание

Через 7 дней добавляют продажи за последнюю неделю и отбрасывают первую неделю, получая данные опять за 12 недель. В этом случае мы говорим об использовании простой средней. Пример расчета:

Старый прогноз (месячные продажи) – 100 ед.

Фактические продажи (последний месяц) – 80 ед.

Новый прогноз (простая средняя) – 90 ед.

Один из очевидных недостатков этого метода заключается в том, что фактическим продажам придается такой же вес, как и старому прогнозу. Обычно лучше придать больший вес старому прогнозу и меньший – текущим продажам, так как последние могут представлять собой случайную вариацию, единственную в своем роде.

Весовые коэффициенты логичнее определить в 0,8 и 0,2 (в сумме они обязательно должны равняться 1,0). Тогда среднюю величину исчисляют так:

Старый прогноз – 100 x 0,8 = 80 ед.

Фактические продажи – 80 x 0,2 = 16 ед.

Новый прогноз (взвешенная средняя) – 80 + 16 = 96 ед.

Этот метод называется экспоненциальным сглаживанием. Весовой коэффициент, приданный текущим продажам (в данном случае 0,2) называют альфа-множителем. Экспоненциальное сглаживание представляет собой исчисление взвешенной скользящей средней. Преимущество этого метода в том, что он упрощает вычисления и часто позволяет хранить меньший объем данных.

При экспоненциальном сглаживании требуются данные о «старом прогнозе» и альфа-множителе. Еще более важна гибкость метода. Если прогноз занижает действительный спрос, аналитик способен вручную ввести скорректированный прогноз в систему и приступить к сглаживанию. Это значительно удобнее, чем пытаться скорректировать расчет скользящей средней величины.

Источник: https://works.doklad.ru/view/LflM_sCwMWE/2.html

Прогнозирование спроса

Прогнозирование спроса представляет собой обоснованное исследованиями рынка предсказание его развития. Основывается прогнозирование на изучение закономерностей в динамике рынке, причинно-следственных связей и основных тенденций. Для торгового предприятия прогнозирование является основой для планирования продаж, совершения закупок и составления заказов на поставку.

Читайте также:  Как открыть хостел с нуля

Основные особенности прогнозирования

Чтобы прогнозирование было точным и давало максимально полезный результат, следует помнить несколько основных правил составления прогнозов спроса на рынке.

  1. Для группы продуктов можно составить более точный прогноз, чем для отдельных товаров.
  2. На короткий срок прогнозирование более точно, чем на длительный.

В зависимости от срока, на который составляется прогноз, выделяют следующие виды прогнозирования спроса:

  • Оперативное – на срок не более 30 дней.
  • Конъюнктурное – на срок от квартала до полугода.
  • Краткосрочное – на один-два года.
  • Среднесрочное – на срок от двух до пяти лет.
  • Долгосрочное – на срок от пяти до десяти лет.
  • Перспективное – на срок более десятилетия.

Когда нужно и когда не нужно прогнозирование спроса?

Прогнозирование спроса – незаменимый инструмент ведения бизнеса. Он позволяет избежать лишних расходов на создание нереализуемой продукции и в максимальной степени удовлетворить потребности клиентов. Существует лишь несколько случаев, когда прогнозирование не актуально:

  • Когда продукция создается по заказу клиенты. В этом случае, как правило, клиент готов подождать определенный срок, которого хватит и на приобретение компонентов, и на производство самого товара. В таком случае планирование закупок и, как следствие, спроса, не требуется.
  • Если необходимые для выполнения заказов клиентов мощности можно быстро, без существенных затрат, изменить.
  • Когда финансовое планирование в принципе не целесообразно

Во всех прочих ситуациях планирования спроса проводится в обязательном порядке. Однако формирование прогноза зависит от того, какие цели преследует проводящий анализ спроса на продукцию. Перед началом проведения анализа следует ответить на несколько основных вопросов, которые оказывают решающее влияние на характер прогнозирования:

  • Каковы сроки планирования? Прогноз должен соответствовать горизонту планирования, будь то один месяц или десяток лет.
  • Какой уровень детализации прогноза? Должен ли он содержать суммарный план по регионам или рассматривать каждого отдельного заказчика.
  • Как часто пересматривается прогноз? Требуется ли пересмотр результатов прогнозирования через определенный период после формирования прогноза? Если да, то через какой промежуток времени – год, месяц или неделю?
  • Какой интервал прогнозирования? Какие временные промежутки должен отображать прогноз – дни, недели, месяцы и т.д.

Методы прогнозирования спроса

Самое главное в прогнозировании спроса – это выбор методов прогнозирования. Все методы, которые используются при анализе и прогнозировании спроса, можно поделить на три категории:

  • Эвристические – эти методы основываются в первую очередь на субъективных началах.
  • Экономико-математические – объективные методы, имеющие четкое научное обоснование.
  • Специальные – представляют собой особую категорию, в равной степени основывающуюся и на объективных, и на субъективных началах.

Эвристические методы прогнозирования спроса, в свою очередь, включают более мелкие категории.

Это могут быть как социологические методики, основывающиеся на опросах покупателей и выявлении их мнений, так и экспертные методики, которые базируются на информации, полученной от специалистов в определенной области, которые высказывают мнение на основе своего опыта, интуиции и профессиональных навыков.

Недостатком таких методик является невозможность точно определить, какие факторы были учтены при прогнозе, а какие нет. Неявная форма учета различных критериев подвергает анализ потребительского спроса на основе эвристических методик сомнению, поэтому оптимальным вариантом является сочетание эвристических методик с экономико-математическими.

Важно

Экономико-математические методы включают в себя более точные способы прогнозирования. К числу этих методов относится моделирование, которое заключается в формировании прогнозной модели на основе ряда существенных факторов.

Также к этой категории относится экстраполяция, которая заключается в пролонгировании опыта прошлого на будущий период. Также в категории экономико-математических методов прогнозирования находится расчет коэффициента эластичности спроса.

Развитие математической статистики и экономики, а также активное включение в процесс прогнозирования современных технических средств делает экономико-математические методы особенно точными.

Специальные методы прогнозирования представляют собой трендовые модели в виде математической или графической информации. Тренд является временным фактором, который позволяет охарактеризовать тенденции в динамике основных показателей рынка.

Он учитывает и особенности спроса на те или иные товары. Также к специальным методам можно отнести панельные опросы, методы пробных покупок, метод повторной покупки, тестирование рынка и т.д.

Все эти методы позволяют изучить тренд и на его основе сделать прогноз о развитии рынка.

Значение прогнозирования спроса

Изучение и прогнозирование покупательского спроса позволяет оптимизировать планирование производства. Хотя точный на 100% прогнозов до сих пор не существует, чем вше точность прогноза, тем эффективнее вы сможет вести бизнес.

При помощи прогнозирования спроса можно оптимизировать поставки дилерам или в магазины, предотвратить затоваривание складов, дефицит или, напротив, порчу просроченных продуктов.

Именно поэтому профессиональное прогнозирование спроса на рынке необходимо каждой компании, занимающейся производством тех или иных товаров.

Источник: https://business-planner.ru/articles/prodazhi/prognozirovanie-sprosa.html

Моделирование и прогнозирование спроса населения на товары и услуги

Научное прогнозирование спроса необходимо для вы­работки долгосрочной экономической политики и приня­тия тактических управленческих решений в области производства продукции и торговли товарами народного пот­ребления.

Спрос должен прогнозироваться на всех уровнях уп­равления экономикой.

На макроуровне на основе прогнозов спроса на товары народного потребления разрабатывается механизм государственного воздействия на потребительский рынок с целью обеспечения сбалансированности спроса и предло­жения и наиболее полного удовлетворения потребностей населения в товарах как в текущем периоде, так и в перспективе. Подобного рода проблемы решаются и на регио­нальном уровне.

На микроуровне прогнозы спроса разрабатывают­ся как торговыми организациями, так предприятиями-пот­ребителями и изготовителями.

Совет

Торговые организации в условиях рыночных отноше­ний могут требовать от предприятий-производителей пос­тавок товаров, необходимых населению.

Предприятия-производители на основе результатов про­гнозных расчетов спроса заключают договоры на поставку продукции и формируют производственную программу.

Разрабатываются долго-, средне- и краткосрочные про­гнозы спроса. Различия целей отдельных видов прогнозов временного аспекта придают каждому из них специфичес­кие особенности. Так, краткосрочные прогнозы реа­лизуются в рамках уже сложившейся структуры спроса и возможностей производства продукции.

Результаты про­гнозов используются для обоснования заказов и заявок на товары народного потребления, расчетов товарного обеспе­чения розничного товарооборота и для принятия управлен­ческих коммерческих решений. Краткосрочные прогнозы разрабатываются на месяц, квартал, год. Они должны от­личаться более высокой степенью точности.

При кратко­срочном прогнозировании определяется достаточно широ­кий круг показателей (совокупный спрос, спрос на груп­пы товаров, ассортиментная структура и др.).

При разработке среднесрочных прогнозов учиты­ваются сложившаяся структура, возможности производства и влияние инвестиций на развитие производственной деятельности.

В течение трех — пяти лет ассортимент товаров в стране существенно обновляется и заметно изменяется структура спроса. В этих условиях нет необходимости де­тализировать прогноз спроса до моделей и марок товаров.

Достаточно определить совокупный спрос с выделением ос­новных товарных групп.

Долгосрочные прогнозы (свыше пяти лет) служат средством разработки стратегии производства товаров и тор­говли.

Обратите внимание

Особенностью долгосрочного прогнозирования спро­са является то, что оно не обусловливает необходимость увязки прогнозных оценок со складывающейся структу­рой производства.

Долгосрочный прогноз спроса служит основой разработки перспективных направ­лений развития производства товаров и торговли.

Различные по срокам упреждения прогнозы отлича­ются также методами прогнозирования.

Для повышения точности прогнозов необходимо при­менять комплекс методов прогнозирования с целью полу­чения нескольких вариантов прогноза и выбора оптималь­ного варианта.

Спрос выступает в качестве определяющего фактора при принятии решений о производстве или импорте того или иного вида продукции, поэтому он должен изучаться как внутри страны по регионам, так и на мировом рынке.

Процесс прогнозирования спроса включает ряд этапов:

– комплексное исследование рынка, конкурентной сре­ды, выделение сегментов рынка;

– анализ состояния спроса и предложения, определение степени удовлетворения спроса населения в конкретных то­варах, совокупного спроса; анализ факторов, влияющих на спрос и установление взаимозависимости показателей;

– выбор методов прогнозирования;

– осуществление прогноза спроса;

– оценка надежности прогноза;

– определение перспектив развития спроса населения;

– разработка конкретных мероприятий по более пол­ному удовлетворению спроса населения.

Прогнозирование платежеспособного спроса базирует­ся на статистике ретроспективного периода и на прогнозе ряда факторов, определяющих спрос.

Для осуществления прогнозных расчетов необходима следующая исходная информация:

– сведения о численности населения, половозрастном составе в прогнозном периоде, количестве городских и сельских жителей;

– динамика спроса и предложения;

– данные о развитии сельскохозяйственного производ­ства и производства товаров народного потребления;

– балансы денежных доходов и расходов населения;

– распределение населения по размеру доходов;

– бюджеты семей рабочих, служащих, колхозников;

– данные специальных единовременных выборочных обследований запасов предметов длительного пользования

у населения, доходов и расходов;

– сведения об индексах потребительских цен (общих и индивидуальных — по конкретным товарам), соотноше­нии внутренних и мировых цен;

– данные опроса покупателей с целью выявления их желания в приобретении определенных товаров;

– рекомендуемые нормы и фактическое потребление важ­нейших продуктов питания и товаров на душу населения;

– изменение денежных доходов населения в предшест­вующих и прогнозном периодах;

– доля расходов населения на продовольственные, не­продовольственные товары, отдельные группы товаров в предшествующие периоды.

На начальном этапе прогнозирования выявляются тен­денции изменения спроса.

Для анализа тенденций изменения спроса целесооб­разно использовать графики и различного рода диаграммы и картограммы.

Читайте также:  Бизнес «дед мороз и снегурочка на дом»: как все организовать

На основе выявленных тенденций спрос на кратко­срочный период целесообразно определять с помощью ме­тодов экстраполяции: метода подбора функции, экспонен­циального сглаживания с регулируемым трендом и др.

Важно

В случае устойчивой тенденции изменения спроса про­гнозные расчеты можно производить путем выравнивания динамических рядов и подбора функции (у = at + b — линейная, у = at2 + bt + с — параболическая и др.).

При изменяющихся условиях целесообразно применять метод экспоненциального сглаживания с регулируемым трендом. Развитие спроса подвержено сезонным колебани­ям, которые необходимо учитывать при краткосрочных про­гнозах на квартал, месяц. Учет влияния сезонных колеба­ний продаж (спроса) целесообразно проводить с помощью расчетных индексов сезонности.

На практике для изучения спроса широко использу­ются наблюдения, опросы покупателей о покупательских намерениях (анкетные опросы, интервьюирование), ярмар­ки, выставки, книги предложений, тестирование, рек­лама.

На макроуровне наиболее широкое распростране­ние для прогнозирования спроса получил нормативный ме­тод, предполагающий использование норм потребления продуктов (товаров) на душу населения. При этом в зави­симости от прогнозного периода необходимо применять сле­дующие подходы.

При определении спроса на длительную перспек­тиву целесообразно использовать рекомендуемые (рациональ­ные) нормы потребления. Например, рациональная норма пот­ребления мяса и мясопродуктов на душу населения — 82 кг в год.

На основе этой нормы и численности населения в стране (регионе) рассчитывается потребность в мясе и мясо­продуктах на прогнозный период.

Потребности выступают в качестве ориентира для развития производства и разра­ботки мер с целью достижения рациональных норм пот­ребления.

Краткосрочные прогнозы спроса следует строить с учетом корректировки норм потребления. Для этого фак­тическое потребление на душу населения анализируется по периодам и сопоставляется с рекомендуемыми норма­ми. Выявляются тенденции потребления продукции, тем­пы падения или увеличения спроса, причины его изменения.

Совет

Затем с учетом влияния факторов, прежде всего из­менения доходов населения и потребительских цен, опре­деляется реальное потребление на душу населения в про­гнозном периоде.

Прогнозы спроса по важнейшим товарам разрабатыва­ются для анализа и прогнозирования состояния товарных рынков и выработки рекомендаций о мерах государствен­ного воздействия на эти рынки, а также обеспечения за­интересованных организаций информацией о динамике спроса.

В рыночной экономике спрос на товары народного пот­ребления формируется под влиянием ряда факторов, по­этому для осуществления прогнозных расчетов рекоменду­ется использовать многофакторные модели — линейные или нелинейные:

y1 = а1х1t + a2x2t + …+ аn хnt + b;

y1 = bx1ta1 * x2ta2 *….. * xntan

где у — показатель спроса на товар; x1, x2, … хn: — факто­ры, влияющие на спрос.

С помощью корреляционно-регрессионного анализа ус­танавливается связь между спросом и факторами, опреде­ляются ее форма (линейная, нелинейная) и теснота связи.

Целесообразно разрабатывать несколько вариантов про­гнозов спроса на товары народного потребления, отличаю­щихся значениями определяющих их факторов. Сравне­ние различных вариантов позволяет выбрать тот, который обеспечивает наиболее полное удовлетворение потребнос­тей населения в отдельных товарах.

Прогнозирование спроса можно осуществлять на осно­ве однофакторных моделей. Их целесообразно применять при необходимости учета влияния важнейшего фактора на спрос. Например, при стабильном уровне цен можно опре­делить зависимость спроса на товары от изменения дохо­дов населения.

Спрос на товары народного потребления можно опреде­лять с помощью коэффициента эластичности.

Экономический смысл коэффициента эластичности сос­тоит в том, что он является показателем, характеризую­щим степень изменения (роста или снижения) спроса на 1 % изменения (роста или снижения) фактора. Спрос фор­мируется в основном под влиянием изменения доходов и цен. Кэ показывает, как изменяется спрос в процентах при изменении этих факторов.

Обратите внимание

В переходный период при усилении дифференциации доходов населения для прогнозирования спроса целесооб­разно использовать регрессионную модель, построенную на основе данных о дифференциации доходов населения и рас­ходов по товарным группам, суть которой заключается в следующем.

Население в соответствии с доходом на одного человека разбивается на процентильные (децильные) груп­пы, т.е. выделяют 10 % населения с наименьшим дохо­дом, затем следующие 10 % и т.д., заканчивая распреде­ление группой, состоящей из 10 % населения с наиболь­шим доходом.

В качестве единственного фактора формиро­вания перспективной структуры спроса рассматриваются доходы населения. Данные о доходах населения и расхо­дах по товарным группам формируются в виде таблицы.

В ней отражаются группы населения по доходам, интервал дохода на одного человека в год (месяц), доля населения в процентах по интервалам доходов, средний доход на одно­го человека, расходы по товарным группам на одного чело­века в год (месяц).

Прогноз спроса на каждую товарную группу будет фор­мироваться под влиянием изменения доходов на душу на­селения.

Для прогнозирования спроса на товары можно исполь­зовать модель поведения потребителей в условиях товарно-денежных отношений, базирующуюся на принципах оп­тимального удовлетворения потребностей по группам пот­ребителей. Модель имеет вид:

n

∑ Yj → max;

j=1

n

∑ PjYj ≤ D;

j=1 ss

Qj ≤ Yj ≤ Qj

где Yj — спрос на j-й товар; Pj — цена на j-й товар; D — доходы потребителей; Qj, Qj — нижний и верхний пре­делы спроса j-го товара с учетом предложения.

Потребители предварительно подразделяются на одно­родные группы по социально-демографическим признакам. Считается, что внутри каждой группы предпочтения на множество товаров и услуг одинаковы.

Важно

При прогнозировании спроса с учетом особенностей то­варов могут применяться различные подходы. Так, на то­вары легкой промышленности спрос определяется в усло­виях их широкого ассортимента. Разработать прогноз по такому широкому кругу позиций затруднительно, поэто­му отдельные позиции необходимо агрегировать.

Напри­мер, в группе швейных изделий можно выделить модную одежду, рабочую одежду и другие подгруппы. Следует также учитывать сроки износа изделий и обновления гардероба, подразделять товары на группы с учетом половозрастного признака потребителей (например, товары для молодежи, детей, лиц пожилого возраста).

Прогнозы спроса на товары культурно-бытового назна­чения должны базироваться на числе семей, их обеспечен­ности этими товарами, покупательских намерениях на при­обретение, наличии денежных сбережений, жилищных ус­ловиях и т.д.

Общий объем спроса на товары длительного пользова­ния состоит из двух частей: спроса на замену и спроса на расширение парка этих изделий.

Спрос на замену можно определить исходя из данных о реализации этих товаров в предшествующие годы и средних сроков их использова­ния в семьях.

Согласно статистическим данным, средние сроки службы телевизоров, электропылесосов, часов всех видов, магнитофонов составляют 10 лет, холодильников — 20, стиральных машин — 15 лет.

Прогноз спроса на конкретные виды товаров следует выполнять с учетом данных об изменении доли отдельных товаров в общем объеме товарооборота.

Исходя из прогнозных расчетов спроса определяется структура платежеспособного спроса населения и разраба­тывается сводный заказ торговли на производство важней­ших товаров народного потребления на плановый период.

Прогноз спроса предприятий-производителей на выпус­каемую продукцию предполагает:

– анализ тенденций изменения доли фирмы в общем рынке;

– оценку рыночной стратегии конкурентов и перспек­тив освоения новых видов изделий;

– анализ рыночной стратегии фирмы и качества про­дукции;

– прогноз спроса на продукцию фирмы.

Совет

Для фирмы главное — завоевание доверия потребите­лей к ее продукции. Для того чтобы прогнозировать буду­щие потребности людей, необходимо проанализировать, как потребитель реагирует на появление на рынке принципи­ально новых изделий.

Зарубежные исследователи выделяют среди возможных следующие направления стратегии фирмы по производству продукции:

– внешнее отличие товара в глазах покупателя от това­ра конкурентов;

– выход на рынок с новым товаром;

– разработка пионерного товара, который будет лиде­ром на ближайшие годы, обеспечивая превосходство над конкурентами.

Для реализации этих направлений собираются идеи по созданию нового товара и до минимума сокращаются сро­ки между выдвижением идей и пробной продажей товара. С целью поиска идей широко применяются методы эксперт­ных оценок: метод коллективной генерации идей, метод “635”, метод “Дельфи”.

Лидером в выработке стратегии фирмы является Япо­ния. Японские фирмы гордятся тем, что их служащие еже­годно вносят огромное количество идей, из которых отбираются 7 — 10 оригинальных, имеющих практическое зна­чение.

Прежде чем принять решение о выпуске новых изде­лий, наряду с прогнозом спроса необходимо спрогнозиро­вать издержки производства, цену и прибыль.

Для выявления реакции потребителей целесообразно использовать рекламу, пробную продажу.

Изучение спро­са на новые товары может также осуществляться на выс­тавках-продажах, выставках-просмотрах, ярмарках.

Опре­деляются степень соответствия изделий запросам покупа­телей, их предпочтения другим товарам-аналогам и усло­вия, при которых население отдает предпочтение новым товарам (цена, оформление и др.).

Обратите внимание

Товары рыночной новизны являются ключевыми для коммерческого успеха предприятия. Фирмы, производя­щие такие товары, имеют возможность устанавливать мо­нопольные цены и получать более высокую прибыль.

Каждый товар имеет свой жизненный цикл (ЖЦТ). Концепция ЖЦТ исходит из того, что товар имеет опреде­ленный период рыночной устойчивости.

ЖЦТ или описы­вающую его в координатах “прибыль—время” кривую можно разделить на стадии внедрения, роста, зрелости, насыще­ния и спада.

Переход от стадии к стадии происходит без резких скачков, в связи с чем необходимо следить за изме­нениями темпов продажи или прибыли, чтобы уловить гра­ницы стадий и внести изменения в товар или производ­ственную программу.

При прогнозных исследованиях товарного рынка на­ряду с комплексным анализом большую роль играет разра­батываемая стратегия ценообразования, так как цена явля­ется важным рычагом продвижения товара на рынок и оп­ределяющим фактором объема продаж и прибыли.



Источник: https://infopedia.su/7xc1f1.html

Ссылка на основную публикацию
Adblock
detector